翻訳と辞書 |
Pfeffer integral : ウィキペディア英語版 | Pfeffer integral In mathematics, the Pfeffer integral is an integration technique created by Washek Pfeffer as an attempt to extend the Henstock integral to a multidimensional domain. This was to be done in such a way that the fundamental theorem of calculus would apply analogously to the theorem in one dimension, with as few preconditions on the function under consideration as possible. The integral also permits analogues of the chain rule and other theorems of the integral calculus for higher dimensions. ==Definition== The construction is based on the Henstock or gauge integral, however Pfeffer proved that the integral, at least in the one dimensional case, is less general than the Henstock integral. It relies on what Pfeffer refers to as a set of bounded variation, this is equivalent to a Caccioppoli set. The Riemann sums of the Pfeffer integral are taken over partitions made up of such sets, rather than intervals as in the Riemann or Henstock integrals. A gauge is used, exactly as in the Henstock integral, except that the gauge function may be zero on a negligible set.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Pfeffer integral」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|